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Errors when Shock Waves Interact due to Numerical Shock Width*

RALPH MENIKOFF

Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87545

(send correspondence to Ralph Menikoff: (505) 667-7761, FAX (505) 665-4055)

ABSTRACT

A simple test problem proposed by Noh, a strong shock reflecting from a rigid wall, demon-
strates a generic problem with numerical shock capturing algorithms at boundaries that
Noh called “excess wall heaiing.” We show that the same type of numerical error occurs in
general when shock waves interact. The underlying cause is the non-uniform convergence
to the hyperbolic solution of the inviscid limit of the solution to t'ie PDEs with viscosity.
The error can be understood from an analysis of the asymptotic solution. For a propa-
gating shock, there is a difference in the total energy of the parabolic wave relative to the
hyperbolic shock. Moreover, the relative energy depends on the strength =i the shock. The
error when shock waves interact is due to the difference in the relative energirs hetween
the incoming and outgoing shock waves. It is analogous to a phase shift in o scatteriug ma-
trix. A couservative differencing scheme correctly desceribes the Hugoniot jump conditionus
for a steady propagating shock. Therefore, the error from the asymptotics occurs in the
transient when the waves interact. The entropy error that occurs in the interaction region
remains localized but does not dissipate. A scaling argument shows that as the viscosity
coctiicient goes to zero, the error shrinks in spatial extend but is constant in mungnitude,
Noh'’s problem of the reflection of a shock from a rigid wall is equvadent to the syuunetrie
inpnct of two shock waves of the opposite fnmily  The nsymptotic wrgument shows the
the sune type of numerical error wonld ocers when the shocks are of unequal strength
Thus, Nol's problen is indieative of n num el error that securs when shocks internet

due to the numerienl shock width.
Key words: byperbolic conservation laws, shock interactions, viscons profiles

AMS (MOS) subject classatication: 30165, 30167, GHN 12, TOM2(0)
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1. Introduction

The equations for ideal Auid flow form a hyperbolic system of conservation laws

p pu \
ag pu +0: PU.',‘{".P =0 (11)
p(%u2+E) p(%u"’+E)u+Pu

where p is the density, u is the particle velocity, E is the specific energy, P(V,E) is the
pressure and V = 1/p is the specific volume. Dissipation only occurs across a shock
wave and physically is accounted for by imposing the Rankine- Hugoniot jumnp relations
across the shock discontinuity. Finite difference shock capturing algorithms are frequently
used to obtain a numerical solution to the fluid flow equations. These schemes have a
numerical dissipation that gives a shock wave a small width measured in grid cells, but an
artificially large spatial width co:npared to the typical shock width that physically occurs.
The effect of the artificial shock width is largest when shock waves interact. To determine
the effect of the numerical shock width, we analyze the asymptotic solution for a simple

shock interaction when a viscous dissipative term is added to the ideal fluid equations.

The problem we coasider in detail is a strong shock in anideal gas reflecting from
a rigid wall, This is equivalent to the interaction between equal strength shocks of the
opposite family. It is similar te a test problem Noh [3] introduced ihat exemplify errors in
nunericnl ealeuletions due to artificial viseosity. In Noh's problem the initial data consists
of n uniform state of cold gas with a constant veloeity directed towards a vigid wall. Its
solution has a strong outgoing shock. Because of the zero itial sonnd speed, an analytic
solution exists in planar, “ylindrical and spherieal geometry. Typically, numerical solntions
have an entropy error at the bonndary. The shock internction problem considered here
ix lesy singular then the Noh problem. The initinl state is assumed to have a siwooth
viscous profile rather than o discontinuity in the velocity. Furthermors, the Mach numnber
of the reflected shiock s finite, Nevertheless, the sae type of entropy etror oceurs in the

numerical solution of the shoek interaction problen.

The hyperbolie solution of the shock interaction problem consists of an outgony, shock

winve. Decnnse the lux at the honnduries v constant, the total mnsy, moementim and
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energy in the viscous solution have the same value as those in the hyperbolic solution. We
define the shock position of the viscous wave to have the same total mass and momeuntum
as the hyperbolic shock wave. An important quantity in the asymptotic analysis is the

energy of the viscous shock relative to the energy of hyperbolic shock.

We show that there is a shift in the relative energy between the incoming and outgoing
waves. This implies that an entropy error rnust occur during the transient shock inter-
action. For a shock reflection, the transient take- place when the shock profile overlaps
with the boundary. After the transient, the entropy is frozen in place, i.e., convects along

particle trajectories, and the error does not dissipate.

A scaling argument due to Noh shows that as the viscous coefficient goes to zero
the entropy error decreases in spatial extent but not in magnitude. It implies that the
convergence of the inviscid limit to the hyperbolic solution is non-uniform in regious where

shocks have interacted.

2. Asymptotics

Let us consider a steady state viscous shock wave. Suppose ihe wave is right facing,
and propagnting with velocity 7. Furthermore, let the reference points r, and ry be in
the nhead and behind state respectively, with ey <0 ry. The position of the wave can
be defined by comparing the viscous protile with a discontinnous shock and adjusting the

discontinuity such that the two waves have the sane total mass,

The condition that the waves have the same mnss s given by
r, Ta
) - / J.r(p )b / (1.['(,) Pa) (2.1
Y r,
Relntive to ry the shock position hased on the manss is given by

Lo n b lpp ) ! / deiptr)  pa) (i
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Similarly, the position of the wave could be defined by matching the total momentum.
The shock position based on moinentum is obtained from Eq. (2.2) by replacing the mass

density p with the momentum density pu.

In steady state the mass Hux is everywhere constant
plu—o)=m

Hence, there is a linear relation between mass density and momentum density pu = po + .
Consequently the shock positions, based on either the 1.1ass or momentum of the waves,

are the same.

One could also base the shock position on the total energy. However the energy
density € = (Ju? + E)p is not Galilean invariant. This would lead to a non-uniqueness in
the shock position. Instead, we define the relative energy between the viscous protile and

the discontinuous shock with the shock position based on mass

. I I
ot :/ de (& - &) +—/ de (& ~ &)
I r

/ dr (& - Ey) - (g - ) (E - &) (2.3)

We note that 887 ~ 0 corresponds to an excess energy i the viscous profile over the
1

discontinuous shock.

We next show that the relative energy is Galilean invariant and henee well defined.,
In areference frame moving with velative veloeity o the energy density is transformed
to & 8 b pun _:-p(u')‘. Substituting & mto Eqgo (2.3) one finds that the addivonal
teris are proportiomad to the mnss and momentum deasaity and have the sane form oo
Fq. (2.1). Henee, the additional terms vonish when ¢, 15 chosen to be the shoek position

hased on mnss or equivalently  omentum,
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3. Von Neumann-Richtmyer Viscosity

Viscosity can be incorporated into the fluid equations by adding a viscous pressure
onto the fluid pressure, P - P + @ in Eq. (1.1). We analyze the viscous fluid equations
using a von Neumann-Richtinyer viscosity (2] and an ideal gas equation >f state. The von

Neumann-Richtmyer viscosity is defined by the viscous pressure

_JC Pez(_azu)z. if Ou < 0;
Q= { 0, otherwise. (3.1)

where C, is a dimensionless viscosity and ¢ is a length scale proportional to the shock

width. Without loss of generality we can set C, = 1. For an ideal gas

PV =(y -1)E (2.

)
[ £+
~—

with v > 1.

[n this case, there is an exact analytic formula for the viscous profile of a shock wave

[4]. Let o be the shock velocity and the variable

+ 1 J L —at
(1).—:(72 ) (——(—) (3.3)

be a sealed length relative to the shoek front. Then the viscous prefile is given by

Viw) = ,-:—(V,, VL) + ,'Z-(V,. Vi) singwe) (3.4
1 ’ r 2

) 0y £ DV, = W) cosf () )

) ) = l- ) - l ) ) Y ' - __4.._- e e et e o et : N
1(”) "_(Ill +Pb) z(lb Ill)[""l(_“) { (V,‘ +vrb)*_(v“ . "’b).‘«ii“(“')} (; -),
(Vi - Vi) eost(w) 1 .

)y == 1 " o N 4 Y A 3.
Qlw) faly + 1) (Py 1..)[”.“ N ESTAR AT (3.6)
ww)=a - mb(w) (:3.7)

where m - pa(e - w,) is the sy thax through the shoek front. From the Hugomor poanp
condivions m? (P PO/(Ve V). We note the shock profile is of finite width extendig,

from the nhend state nt e, - llrr to the belinnd stnte ot wy L

The shock position based onminss s given by

\ /e %
m W .l ' - TPy .‘
" bt ) / nil ! (Vo Yy Y Vidsmwe) v )
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The integral is of the form evaluated in the appendix. It can be simplified to give
r)‘k -1
Wy =Wy + 1| ——— {3.9)

where n = V,,/V} is the compression ratio of the shock. We note the limiting cases: for
a weak shock  — 1 and w, — 0 while for a strong shock  — (v + 1)/(7 = 1) and

-—%rr < w, < 0.

It is convenient to calculate the relative energy of the shock profile in the rest frame
of the shock front, i.e., 0 = 0. In this case the kinetic energy is 1pu? = ;m?V and the

energy density can be expressed as
E=im*V+(y-1)7'P (3.10)

Substituting this expression into Eq. (2.3) for the relative energy we obtain

) 9 i ' r/2 1 r/2
oET = (——-—) ¢ .-;-mz/ dwV(w) 4+ —— dw P{w)
y+1 —n/2 Y=1J_xp2

- w& —(wy —wy) (& — &, )j (3.1
The integrals can be evaluated with the formulae in the appendix,
n/2
/ dw V(w) = :— (Ve + W)

--w/2

n/2
/ dw P(w) - 1= [(P,. Py - Sy k Dt - 0¥y -1 YDy - P..)]
~nfe

After steaightforward algebraie manipulntion, we obtain {or the reiative cuergy

. [ .
. 1 ) § 1;* -1 (v,s 1)*
FYSLAN, R ) oy P, 1 eV Ly

ir 1<7»-1 (I ){n )[”w ST AR AR

(3.1
We note three general propesties of the relative energy.
(1) o&T 1 funetion of the shock width,

In particular, AT 0 s the shock width poes to zero.
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(2) 6€T is a function of the shock strength.
For weak shocks JET/é’ ~ (Py — P,)* and for strong shocks 6T /¢ ~ (P, — P, ).

(3) 8ET varies with v, and hence the equation of state.
This is a consequence of the fact that the viscous pressure depends only on the density
and velocity, hence the shock profile depends on the equation of state.

These important properties are expected to be true for any reasonable viscosity and equa-

tion of state.

4. Example of Reflected Strong Shock

The effect of the shock width on a shock interaction can be seen in the simple case
of a strong shock retlecting from a rigid wall. To compare the viscous solution with the
hyperbolic solution, we compute the difference in the relative energy between the incoming
shock and the outgoing shock, AET = 0£L, - 6ET. We note that AET > 0 corresponds to

R net excess energy in the viscous shock profiles compared to the hyperbolic shocks.

Let “he pressure behind the incoming shock be P, The compression ratio of a strong
shock 15 9, = (y + 1)/(y = 1). The reflected shock is characterized by its pressure ratio,

P, /Py =1+ 29/(y - 1), and its compression ratio, p,.y/pe = v/(7 ~ 1),
, : _ NAERY o
The scale for the relative energies is e = -- mT \T) ¢ P,. Substituting the values

for the pressure and compression ratio into Eq. (3.11) we obtaia for the relative energies

S () I RO R A
al e (5 .3){3(7 y 1)‘(;7)’ -l} _ 771} Uy f--l)H-"l)[({'?--i-)& l}

From the above formmlae, the difference i the relative energies can ensily be eveluated

unmerically as a funetion of 3. A plot shows the tollowing genernd pranerties for the

difference of the relative energy:
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(1) AT w0 asy— 1
This singularity is due to the singularity in the compression ratio at v = 1.
(2) AT =0 at y = 2.4
(3) The minimum value of AET =~ —0.34 occurs at v = 4.65
(4) AET -0 as y — oo.

We note that in general AET is not zero.

The constant flux ahead of the outgoing wave can be accounted for by comparing the
position of the shock in the viscous solution to that of the hyperbolic solution. The shift
in the energy of the viscous shock profiles implies that a steady state outgoing wave can
not simultaneously satisfy the flux relations for mass, momentum and energy. Instead,
the shock interaction must result in a transient. The transient occurs on both a fast and
slow time scale and results in an entropy error when comparing the viscous solution to the

hyperbolic solution.

Over the fast tine scale, (shock width)/(shock velocity), the viscous pressure smoothes
out any discontinuity in the non-degenerate or acoustic modes. This is important when
the positions of the incoming and outgoing shock waves are within a few shock widths of
the wall. The pressure and particle velocity rapidly equilibrate towards the values of the
hyperbolic solution as the incoming shock profile changes to the outgoing profile. On the
slow time scale, the viscous solution is close to the solution to the Riemann problem and

the outgoing shock profile approaches its steady state solution,

On the slow time scale, the shift iu cuergy is small compared to the total energy
behind the shoek. The energy mismatceh in the shock profiles can be distributed over the
region hetween the wall and the shock front by acoustic waves. The entropy error at the
shock front is small and further decrense as 1/¢ for large . This is a consequence of the
faet that the Hugoniot jump conditions give the correct entropy jump neross a steady state

shock profile independent of the form of dissipation.

On the fust time seale, the energy shift s signifiennt compared to the total energy

in the shock profile. This vesults in o significnnt entropy error in the interaction region

b
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during the transient in which the shock profiles change. After the pressure and particle
velocity have equilibrated, the viscous pressure in the interaction region approaches zero
and the subsequent chang= in entropy is negligible. Without heat conduction which would
give rise to diffusion of entropy, the entropy error is frozen into the particle trajectories.
Thus, the bulk of the entropy error from the interaction is confined to within a few shock

widths of the wall.

Let us consider in more detail the interaction region for the case when AET > 0. Near
the wall the outgoing viscous wave must have a deficit in energy equal to AET in order
to compensate for the energy difference in the shock proaies. Because the wall causes the
particle velocity to go to zero, the energy density reduces to £ = pE = P/(yv — 1) and
is proportional to P. When the reflected wave has propagated a couple of shock widths,
the pressure has approximately equilibrated to the value behind the outgoing hyperbolic
shock. In order to conserve total energy, the viscous shock front must be slightly behind
the hyperbolic shock front. Then to conserve mass, on average p must be above the value
for the hyperbolic shock. Since P is-approximately constant, a high value for p implies on

average the entropy S x log(P/p7) is low.

At the wall, the pressure rise is more characteristic of a single strong shock then a
double shock. Since the entropy is greater for a single strong shock then for two sequential
shocks to the same final pressure, right at the wall we expect the entropy to be high and
the density to be low. This implies there is an oscillation in the density and entropy in
the vicinity of the wall. The pressure and density determine the specific energy through
the equation of state. At the wall, a low value of p results in a high value of E. This
ngrees with the results of numerical caleulations and is what Noh |3] called excessive wall
heating, even though there is a damped oscillation in the energy about the value behind

the hyperbolic shock.

Finally, to couserve total momentumn the velocity profile overshoots and becomes
slightly negative immedintely behind the viscous shock front. As the wave moves further
awny from the wall, the viscous profile more closely appronches that of o steady state

shock wave. Consequently, the entropy jump across the viscons wave tapidly approaches

1)
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the value for the hyperbolic shock. As time progresses, further errors in entropy outside

the interaction region are negligible.

We note that the initial data for Noh's test prublem corresponds in effect to taking
the relative energy of the incoming wave to be zerc. In this case, the energy difference for
the interaction is AET = 6T, Again, in general AET is not zero and an entropy error

occurs from the transient interaction that forms the outgoing shock.

Finally, to understand the small distance it take for the shock to form and the pressure
and velocity to equilibrate we estimate the magnitude of 6€T relative to the energy in the
shock profile. For illustrative purposes we assume v = 3/3. From Eq. (3.3) the shock width
is Ar = 2.72¢. The compression ratio of a strong shock is n = (5 + 1)/(y = 1) = 4. From
Eq. (3.12), the energy ratio is 66T /AzE, = /5. Thus the energy in the shock profile will
have a small effect on the shock interaction after the outgoing shock has propagated a

couple of shock widths.

5. Non-uniform convergence of Inviscid Limit

One important consequence of shock interactions is that the convergence of the inviscid
limit to the hyperbolic solution is non-uniform. This may be deduced through a scaling

argument introduced by Noh [3].

The inviscid fluid equations are scale invariant. Scaling space and time amounts to a
choice of units. Viscosity iatroduces a length scale which breaks the invariance. However,
under scaling, the viscous pressure is multiplied by a constant. Therefore, by scaling
the coefficient of viscosity along with the length and time scales, the equations are again
invariant A snlution to the fluid equations with the von Neumann-Richtmyer viscosity
is invariant under the transformation ' = ar, t' = at and C, = «*C,. Furthermore,
this transformation preserves velocity and hence the initial value data. As a — 0, the
entropy error at the wall is constant in magnitude but decreases in spatial extent. Hence

the inviseid limit for this case converges in L' or L? but not in L™,

10
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A shock reflecting from a rigid wall is equivalent to the symmetric collision of two
shocks, i.e.. equal strength shocks of the opposite family. The argument that the cause
of the error is due to the asymptotic shift in the relative energy between the incoming
waves and the outgoing waves implies t. at. the fact that the incoming waves are of equal
strength is not important. Hence, shock interactions in general will result in non-uniform

convergence of the inviscid limit.

8. Effect of Source terms

Noh also has a version oi the shock reflection test problem in cylindrical and spherical
geometry. This introduces an additional effect on shock propagation due to gecmetrical

source terms.

The geometrical source terms are singular at the origin. Consequently, as the shock
approaches the origin the source terms become comparable in magnitude to the viscous dis-
sipation within the shock profile. When this occurs, the conservation form of the equations

no longer implies the Hugoniot jump condition across a shock.

A real effect in which the Hugoniot jump conditions are modified occurs for detonation
waves [1]. In this case the competition between chemical reactions and geometrical source
terms gives rise to the curvature effect in which the detonation velocity depends on the
curvature of the shock front. An artificiaily large numerical shock width and geometric

source terms can have a similar effect near the origin,

An ideal converging shack, from the Gurdeley similarity solution, is singular at the
origin. The shock width provides a length scale which regularizes the singularity when
the shock reflects from the origin. After reflection there are large gradients hehind the
shock front. The shock has to propagate a sufficient distance from the origin in order
for the gradients behind the shock to be small compared to those in the shock profile.
This is a necessary condition for the Hugoniot jump conditions to apply across the shiock

independent of the form of dissipation.
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Thus, when source terms or gradients behind the shock front are large compared
to the dissipation within thc shock profile, the viscous seclution can differ significantly
from the hyperbolic solution. Again the error is in the entropy and is expected to be
localized. Finite difference shock capturing algorithms have an artificially large shock
width. Numerical solutions with schemes that have the smallest shock width will minimize

errors of this type and be closest to the hyperbolic solution

7. Conclusion

We have analyzed the problem of a strong viscous shock reflecting from a rigid wall.
For the von Neumann-Richtmyer viscosity, we have shown that the same type of entropy
error occurs as in Noh's test problem. The error is due to the difference in energy relative
to the hyperbolic solution of the viscous profiles for the incoming and outgoing shock
waves. A scaling arguments shows that as the viscous coefficient goes to zero the entropy
error decreases in spatial extent but not in magnitude. Furthermore, the entropy error is

convected with the fluid and does not dissipate.

Fromn the asymptotic energy argument, we expect the same behavior to wccur for
an arbitrary shock interaction with any dissipative mechanism that results in a non-zero
shock width, provided there is no heat conduction to diffuse entropy. The dissipation may
correspond to a term added to the hyperbolic PDEs, e g., an artificial viscosity, or can be
numerical in nature, e.g., resulting from truncation errors in the differencing scheme or a
Riemann solver used in the Godunov method. The fact that hyperbolic finite differeuce
schemes deliberately underresolve the shock profile is not critical. The iruncation errors
nicrely introduce an oscillation in the shock profile as the position of the shock front

propagates between grid points.

The entropy error when viscous shock protiles interact implies n non uniform conver
gence of the inviscid limit to the hyperbolic solntion. Non-uniform convergence can be

expected at the shock frout. An additional non-uniforiity can occur in o region in which

12

-
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the solution is smooth resulting from a shock interaction that occurred in the region's past

history.

A more severe form of this entropy error occurs when a shock wave is incident on
a material interface or contact. For materials with different equations of state or when
the contact is a discontinuous change in zoning, there can be a large transient resultin<y
from the change in profiles for the incident, transmitted and reflected shock waves. In
Lagrangian algorith.ns the effect is partially ameliorated by choosing the grid such that
the wave speed in units of zones per time step is the same for the outgoing shocks on each
side of the interface. However, the minimal error is similar to that which occurs for the

shock interaction discussed here.

In more complicated fluid flows, additional errors can result from the inhomogeneities
caused by the entropy error from shock interactions. For example, subsequent shock waves
will scatter off tlie inhomogeneities and spread the spatial extent of the error. This effect
is partially ameliorated by the fact that shock heating raises the sound speed. Hence
subsequent reflected shocks have a lower Mach number and the additional entropy errors
they cause decrease as the shocks weaken. Another example occurs in an unstable two
dimensional flow. The inhomogeneities from shock interactions can be the seed for a

perturbation which leads to instability growth.

For some applications, the non-uniform convergence is important. One example is
when comparing the calculated temperature at a wall to experimental data. The numerical
entropy error from a reflected shock results in a high wall temperature which does not
dissipate in time. Moreover, the calculated wall temperature does not imnrove under mesh
refinement. Having understood the cause, one can compensate for this error, e.g., with
sufficient resolution by averaging over a small region in the vicinity of the wall. Another
example is when the aterial is chemically reactive. in particular, for an explosive a
numerical hot spot caused by a shock interaction can initiate™\ detonation. and greatly

effect the Huid flow. ,
.

»
The spatial extend of the entropy error whenshocks interact is proportional to the
a
shock width. Thus, this error iy simalleat for those numorical scheme that minimize the
artificinl shock width. In particnlar, this type of error can be eliminated by using a front

tracking algorithm.

13
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Appendix: Evaluation of Integral

The needed integrals can be evaluated by contour integration as follows. Suppose
a > b > 0 and n is a non-negative integer. Let z = e'*. Then the basic integral of interest

can be expressed as

/" dz cos(nr) —Re/ —idz 2"
0 a+bcos(z) Co 2 a+ibz+1/z)

-n
= Im/ dz ———
o 3bz? +az+ }b

where Cj is the arc of a unit circle in the upper half of the complex plane.

The denominator of the integrand on the RHS has two zeros located at
2y = [—a:i:(az - b“)i] /b

These lie along the real axis with z_ < -1 and ~1 < z4 < 0. Let C be the path formed
by closing the path C, along the x axis but going around the pole at z, in the upper half

plane. By applying Cauchy's residue formulae we obtain

" cos(ni) " /' "
dr ————— =] dz - PV 1
_/; Tar bcos(z) m (-/c 1032 haz + 3b _I(I Yhrt +ar + 1b

+ i Residue( 4 ,)

= 7 Residue(z, )

3 T (_a"! —b'z)i —a "
B (a? - b1k b

Using the symimetry of the sin and cos functions over a half cycle we note two specinl

cases of the above formula

= 1 " 1
e Gt bsin(.r) 0 a + heos(r)

/5' con? (r) / sin(r)
Y PR N dr el
e u t bsin(a)  J, a + heos(r)

[ e
Ju " '{- —l-;';'nn_( .r.)

d ((ll - b‘)b

P —

r
h?
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